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1 Likelihood Function

Let x1, ..., xn be n random variables (r.v.’s) with probability density functions
(p.d.f.) fi(xi; θ) depending on a vector-valued parameter θ.

Often, though not always, x1, ..., xn are assumed to be independent, identi-
cally distributed (i.i.d.) with a distribution whose probability density function
is f(xi; θ).

In this case we say that we have a random sample of n observations from
the distribution with p.d.f. f(x; θ).

Then the joint p.d.f. of x1, ..., xn is

f(x1, ..., xn; θ) =

n∏
i=1

f(xi; θ)

When the sample x = (x1, x2, ..., xn) is observed, the function of θ defined
by L(x; θ) = f(x; θ) is called the likelihood of θ given the observations.

Thus the likelihood function L(x; θ) is the joint p.d.f. of x1, ..., xn viewed
as a function of the unknown parameter θ.

It expresses the plausibilities of different parameters after we have observed
x, in the absence of any other information we may have about these different
values. In particular, for θ = θ0, the number L(θ0 is considered a measure of
support that the observation x gives to the parameter θ0.

Often we work with the natural logarithm of the likelihood function, the
so-called log-likelihood function:

l(x; θ) = lnL(x; θ) =

n∑
i=1

lnf(xi; θ)

1.1 Examples

Example 1. Let x = (x1, x2, ..., xn) be a random sample from an N(µ, σ2)
distribution with µ and σ unknown.

In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(x;µ, σ2) =
1

(2πσ2)
n
2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
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and the log-likelihood function is given by

l(x;µ, σ2) = −n
2

ln2π − n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2

Example 2. Let x = (x1, x2, ..., xn) be a random sample from the exponen-
tial distribution with p.d.f.

f(x; θ) =

{
θe−θx x > 0
0 elsewhere

The likelihood function is

L(x; θ) = θne−θ
∑n

i=1 xi

and the log-likelihood function is given by

l(x;µ, σ2) = nln(θ)− θ
n∑
i=1

xi

2 Score vector and information matrix

2.1 Score vector

Now for some notation: given a differentiable single-valued function f , the func-
tion ∇f is defined as

∇f(x) =

(
δf

δx1
(x), ...,

δf

δxn
(x)

)′
and is known as the n× 1 gradient vector of f .

On the other hand, by ∇2f we mean the n × n matrix of second partial
derivatives of the function f defined as

∇2f =


δ2f(x)
δx2

1

δf(x)
δx1δx2

· · · δf(x)
δx1δxn

δf(x)
δx2δx1

δ2f(x)
δx2

2
· · · δf(x)

δx2δxn

...
...

. . .
...

δf(x)
δxnδx1

δf(x)
δxnδx2

· · · δ2f(x)
δx2

n


This is also known as the Hessian matrix, which is often denoted as H(x) or as
δ2f(x)
δxδx′ .

Having introduced the log likelihood function, we can now define some con-
cepts related to it.

Definition 1. (Score function) If the likelihood function is differentiable,
then the gradient of the log-likelihood

s(x; θ) =
δlnf(x; θ)

δθ

is called the score function.
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Example. Let x = (x1, x2, ..., xn)′ be a random sample from an N(µ, σ2)
distribution. Here θ = (µ, σ2). The score function is given by

s(x; θ) = (
Σ(xi − µ)

σ2
,

Σ(xi − µ)2

2σ4
− n

2σ2
)′

Remark. The proofs of this section are based on a double interpretation of
the function f(x; θ) for a fixed θ.

• It must be considered a probability density function,

but at the same time, being a transformation of the random vector x,

• it is a random variable itself, with expectation and variance.

The same double interpretation holds for the logarithm of f(x; θ), as well as
its derivatives. Thus if we consider the function f(x; θ) like a random vector,
the score function becomes a random vector. We call this random vector score
vector.

Theorem 1. The score vector evaluated at the true parameter value has
mean zero

Proof. As the function f(x; θ) is a probability density functions we have
that: ∫ +∞

−∞
f(x; θ)dx = 1 ∀θ (1)

This is a multiple integral with respect to x1, x2, ..., xn
Thus, differentiating (1) w.r.t. θ we get

δ

δθ

[∫ +∞

−∞
f(x; θ)dx

]
= 0 (2)

We assume that f satisfies some regularity conditions that permit differenti-
ation under integral (for instance, it is twice differentiable w.r.t. θ and the limits
of integration are not functions of θ).

So, (2) can be written ∫ +∞

−∞

δf(x; θ)

δθ
dx = 0 (3)

Integration will be confined to the region where f assumes nonzero (positive)
values. Thus (3) can be written∫

δlnf(x; θ)

δθ
f(x; θ)dx = 0 (4)

If derivative is computed at the true parameter value, so that f(x; θ) is the
probability density of the r.v. x, we have that∫

δlnf(x; θ)

δθ
f(x; θ)dx = E

[
δlnf(x; θ)

δθ

]
(5)

By equation (4) it follows that

E

[
δlnf(x; θ)

δθ

]
= 0 (6)

The score vector evaluated at the true parameter value has mean zero
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2.2 Information matrix

Definition 2. The variance-covariance matrix of the score, evaluated at the
true parameter value θ,

I(θ; x) = V ar

[
δlnf(x; θ)

δθ

]
= E

[
δlnf(x; θ)

δθ

δlnf(x; θ)

δθ′

]
(7)

is called information matrix (more precisely, Fisher’s information measure on
θ contained in the r.v. x).

The following theorem establishes an important result.

Theorem 2.

I(θ; x) = E

[
−δ

2lnf(x; θ)

δθδθ′

]
The information matrix equals the negative of the expected value of the

Hessian of the log likelihood evaluated at the true parameter value θ.
Proof. Further differentiation of (4) gives∫ [

δ2lnf(x; θ)

δθδθ′
f(x; θ) +

δlnf(x; θ)

δθ

δf(x; θ)

δθ′

]
dx = 0 (8)

that is ∫
δ2lnf(x; θ)

δθδθ′
f(x; θ)dx +

∫
δlnf(x; θ)

δθ

δlnf(x; θ)

δθ′
f(x; θ)dx = 0 (9)

Again, because derivatives are computed at the true parameter value, so
that f(x; θ) is the probability density of the r. v. x, the two terms in equation
(9) are expectations, so

E

[
δ2lnf(x; θ)

δθδθ′

]
+ E

[
δlnf(x; θ)

δθ

δlnf(x; θ)

δθ′

]
= 0 (10)

The second term of the sum is the information matrix (7). Thus, from (10)
we get an alternative expression for the information matrix

I(θ) = E

[
−δ

2lnf(x; θ)

δθδθ′

]
(11)

that is the expected Hessian of the log-density, with the opposite sign.

Suppose that we have a random sample x = (x1, x2, ..., xn)′ from a prob-
ability distribution with density function, f(x; θ), characterized by a parameter
(vector) θ.

The joint density of the sample is

f(x, θ) = f(x1;x2, ..., xn; θ) = f(x1; θ)f(x2; θ)...f(xn; θ);

The log-density of the sample will be therefore the sum of the log-densities,
that is

lnf(x; θ) = lnf(x1; θ) + lnf(x2; θ) + ...+ lnf(xn; θ)
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while its first and second derivatives as well as their expectations will be sums
of the corresponding derivatives or expectations.

δlnf(x; θ)

δθ
=
δlnf(x1; θ)

δθ
+
δlnf(x2; θ)

δθ
+ ...+

δlnf(xn; θ)

δθ

δ2lnf(x; θ)

δθδθ′
=
δ2lnf(x1; θ)

δθδθ′
+
δ2lnf(x2; θ)

δθδθ′
+ ...+

δ2lnf(xn; θ)

δθδθ′

As a straightforward consequence, the expectation of the score of the sam-
ple will be zero

E

[
δlnf(x; θ)

δθ

]
= E

[
δlnf(x1; θ)

δθ

]
+ ...+ E

[
δlnf(xn; θ)

δθ

]
= 0

while the information in the whole sample will be

E

[
−δ

2lnf(x; θ)

δθδθ′

]
= E

[
−δ

2lnf(x1; θ)

δθδθ′

]
+ ...+ E

[
−δ

2lnf(xn; θ)

δθδθ′

]

Let

i(θ;xi) = E

[
δlnf(x; θ)

δθ

δlnf(x; θ)

δθ′

]
This is by definition, the information provided by a single observation. We

have that

i(θ;xi) = E

[
−δ

2lnf(x; θ)

δθδθ′

]
It follows that

I(θ; x) = ni(θ;xi)

The information in the whole sample is n time the information provided by
a single observation.

Remark. If f(x; θ) is a strictly positive function whose integral is identically
= 1 for any θ, but for no value of θ it is the probability density function of the
r.v. x, all the above identities involving integrals are still valid, but they cannot
be interpreted as expected values.

3 Cramer-Rao inequality

The next theorem introduce the celebrated Cramer-Rao inequality.

Theorem 3. Let x = (x1, ..., xn) be a random sample of n observations from
the distribution with p.d.f. f(x; θ) depending on a real parameter θ. Let T (x)
be an unbiased estimator of θ. Then, subject to certain regularity conditions on
f(x; θ), the variance of T (x) satisfies the inequality

Var[T (x)] ≥ 1

E

[(
δlnf(x;θ)

δθ

)2
]
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The variance of any unbiased estimator is greater than or equal to the inverse
of information matrix.

Proof
T (x) is an unbiased estimator of θ, so

E[T (x)] =

∫
T (x)f(x; θ)dx = θ (12)

Differentiating both sides of equation (12) with respect to θ, and interchang-
ing the order of integration and differentiation, gives∫

T (x)
δf(x; θ)

δθ
dx = 1 (13)

or ∫
T (x)

δlnf(x; θ)

δθ
f(x; θ)dx = 1 (14)

Because ∫
T (x)

δlnf(x; θ)

δθ
f(x; θ)dx = E

[
T (x)

δlnf(x; θ)

δθ

]
(15)

by (14) it follows that

E

[
T (x)

δlnf(x; θ)

δθ

]
= 1

On the other hand, since

E

[
δlnf(x; θ)

δθ

]
= 0

we have that

E

[
T (x)

δlnf(x; θ)

δθ

]
= Cov

[
T (x),

δlnf(x; θ)

δθ

]
Hence

Cov

[
T (x),

δlnf(x; θ)

δθ

]
= 1

Since the squared covariance cannot exceed the product of the two variances,
we have

1 =

(
Cov

[
T (x),

δlnf(x; θ)

δθ

])2

≤ Var [T (x)] Var

[
δlnf(x; θ)

δθ

]
or

1 =

(
Cov

[
T (x),

δlnf(x; θ)

δθ

])2

≤ Var [T (x)]E

[(
δlnf(x; θ)

δθ

)2
]

It follows that

Var[T (x)] ≥ 1

E

[(
δlnf(x;θ)

δθ

)2
]
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Definition 3 (Efficiency). An unbiased estimator is efficient if its variance
is the lower bound of the inequality:

Var[T (x)] =
1

E

[(
δlnf(x;θ)

δθ

)2
] =

1

ni(x; θ)

We now give a lemma which allows us to establish when the Cramer-Rao
lower bound is attainable.

Lemma 1. Under the same regularity conditions as for Cramer-Rao inequal-
ity, there exists an unbiased estimator T (x) whose variance attains Cramer-Rao
lower bound if and only if

δlnf(x; θ)

δθ
= I(θ; x)(T (x)− θ).

Proof. We have(
Cov

[
T (x),

δlnf(x; θ)

δθ

])2

≤ Var [T (x)] Var

[
δlnf(x; θ)

δθ

]
The bound will be attained if and only if equality is achieved here. On the other

hand equality occurs if and only if T (x) and δlnf(x;θ)
δθ are linearly related, that

is if and only if
δlnf(x; θ)

δθ
= c+ dT (x)

where c and d are constants.
Taking expectations in this equations gives

0 = c+ dθ

that is
c = −dθ.

It follows that
δlnf(x; θ)

δθ
= d(T (x)− θ).

Now multiply the last equation by δlnf(x;θ)
δθ and take expectations

E

[(
δlnf(x; θ)

δθ

)2
]

= dE

[
δlnf(x; θ)

δθ
T (x)

]
− dθE

[
δlnf(x; θ)

δθ

]
.

Since

E

[
δlnf(x; θ)

δθ

]
= 0

and

E

[
δlnf(x; θ)

δθ
T (x)

]
= 1,
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we can conclude that

d = E

[(
δlnf(x; θ)

δθ

)2
]

= I(θ; x).

Example Consider a random sample x = (x1, ..., x2)′ from the Poisson
distribution. Does the sample mean x̄ achieve the Cramer-Rao lower bound?

The likelihood is given by

L(θ; x) =

n∏
i=1

f(xi; θ) =
e−nθ

∑n
i=1 xi∏n

i=1 xi!

and the log-likelihood is

l(θ; x) = −nθ +

n∑
i=1

xilnθ − ln

(
n∏
i=1

xi!

)
.

Hence
δl

δθ
= −nθ +

n∑
i=1

xi/θ =
n

θ
(x̄− θ),

δ2l

δθ2
= −

n∑
i=1

xi/θ
2.

and

I(θ; x) = −E
[
δ2l

δθ2

]
=
nθ

θ
=
n

θ
.

Thus we can conclude that, in this case, the sample mean x̄ achieves the Cramer-
Rao lower bound.

3.1 Multidimensional Cramer-Rao inequality

The Cramer-Rao inequality (Theorem 3) can be generalized to a vector valued
parameter θ.

The generalization of the Cramer-Rao inequality states that, again subject to
regularity conditions, the variance-covariance matrix of the unbiased estimator
T (x), the k × k matrix Var(T (x) is such that Var(T (x) − I−1(θ; x) is positive
semi-definite.

When θ is a (k × 1) vector of parameters, analogously to before, we have

Ik = E

[
T (x)

δlnf(x; θ)

δθ′

]
= Cov

[
T (x),

δlnf(x; θ)

δθ′

]
Now, we consider the following (2k × 1) vector[

T (x)
δlnf(x;θ)

δθ

]

The variance-covariance matrix of this vector is given by

9



Var

[
T (x)

δlnf(x;θ)
δθ

]
=

 Var[T (x)] Cov
[
T (x), δlnf(x;θ)

δθ′

]
Cov

[
T (x), δlnf(x;θ)

δθ

]
I(θ; x)


=

[
Var[T (x)] Ik

Ik I(θ; x)

]
which is positive semi definite, being a variance-covariance matrix (2k × 2k).

Thus, pre- and post-multiplication by a matrix and its transpose still pro-
vides a positive semi definite matrix. In particular, if the information matrix is
not singular (i.e. the derivatives of the log-density are not linearly dependent),
pre-multiplication by the (k × 2k) matrix[

Ik;−I−1(θ; x)
]

and post-multiplication by its transpose produces

Var (T (x))− I−1(θ; x)

which is a positive semi definite matrix.

3.2 Linear regression model with normal error terms

Consider the following linear regression model

y = Xβ + ε,

where y is an n×1 vector of observations on the dependent variable, X is an n×k
matrix of observations on the non stochastic exogenous variables, β is a k × 1
vector of unknown regression coefficients, and ε is an n× 1 vector consisting of
errors. We assume that ε is distributed as multivariate normal with mean vector
zero and variance covariance matrix σ2I, where I is an n× n identity matrix,

ε ∼ N(0, σ2I),

here

θ =

[
β
σ2

]

Being the Jacobian of the transformation | δεiδyi
| = 1 (so that the density f(yi; θ) =

f(εi; θ)) the log-likelihood is

lnL(y; θ) = −n
2

ln(2π)− n

2
ln(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ).

We note that the log-likelihood is a quadratic in the vector β. The score is

s(θ) =
δlnL(y; θ)

δθ
=

[
δlnL(y;θ)

δβ
δlnL(y;θ)

δσ2

]
=

[
− 1
σ2 (X ′Xβ −X ′y)

− n
2σ2 + 1

2σ4 (y −Xβ)′(y −Xβ)

]
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and the Hessian matrix is

H(θ) =
δ2lnL(y; θ)

δθ
=

[
− 1
σ2X

′X 1
σ4 (X ′Xβ −X ′y)

1
σ4 (X ′Xβ −X ′y) n

2σ4 − 1
2σ6 (y −Xβ)′(y −Xβ)

]
.

The expectation of the off-diagonal blocks of the Hessian matrix is zero, and
the expectation of the last block is n/(2σ4 − (1/σ6)nσ2 = −n/(2σ4). So, the
information matrix is

ni(θ) = E[−H(θ)] =

[
1
σ2X

′X 0
0 n

2σ4

]
.

and its inverse (the Cramer-Rao bound for the covariance matrix of any unbiased
estimator) is

[ni(θ)]−1 =

[
σ2(X ′X)−1 0

0 2σ4

n

]
.

The covariance matrix of coefficients estimated by OLS is (X ′X)−1σ2, so OLS
coefficients attain the Cramér-Rao bound.

But the OLS estimator of σ2 does not attain the bound. In fact, remembering
that σ̂2/σ2 is a random variable χ2

n−k divided by n− k, and that the variance
of the χ2

n−k is 2(n− k), we get:

V (σ̂2) =

[
σ2

n− k

]2

V
(
χ2
n−k

)
=

2σ4

n− k

which is larger than the Cramér-Rao bound (however, it is not possible to find
an unbiased estimator of σ2 with a smaller variance; see Rao, 1973, 5a.2).

Remark. If the Hessian (??) is estimated, that is it is computed at the OLS

estimated parameters β̂ and σ̂2, the off diagonal blocks are zero (X ′Xβ̂ −X ′y
= −X ′û = 0).

Remark. Obviously, the good properties of the OLS estimator just described
are no more valid if some elements of xi are correlated with ui. In principle, the
likelihood should be re-specified, to take explicitly into account the correlation,
and maximum likelihood would be different from the simple OLS estimator.

4 Maximum Likelihood estimator

Let x = (x1, ..., xn)′ be a random sample of n observations from the distribution
with p.d.f. f(x; θ) depending on a parameter θ. The set of values that θ could
take is called the parametric space and denoted by Θ.

Definition 4. A Maximum Likelihood estimator of θ ∈ Θ is a measurable
function

θ̂ : Rn −→ Θ

such that
L(x; θ̂) = maxθ∈ΘL(x; θ)

Remark. Of course it is possible, if, for example, Θ is an open set, that no
maximum likelihood estimator exists.
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Proposition 1 (Sufficient condition for existence). If the parameter space
Θ is compact and if the likelihood function L(x; θ) is continuous on Θ, then
there exists an MLE.

Proposition 2 (Sufficient condition for uniqueness of MLE). If the param-
eter space Θ is convex and if the likelihood function L(x; θ) is strictly concave
in Θ, then the MLE is unique when it exists.

Since the natural logarithm is a monotonic transformation, it follows that

θ̂ = argmaxθ∈ΘL(x; θ)

m

θ̂ = argmaxθ∈ΘlnL(x; θ)

The values that maximize L(x; θ) are the same as those that maximize
lnL(x; θ).

It is usually possible to assume that the MLE emerges as a solution of the
equation

δlnL(x; θ)

δθ
= 0

This is called the likelihood equation.
The likelihood equation often have to be solved numerically. A standard

method of solving the likelihood equation is Newton’s method or an adaptation
of it.

Remark. The method of maximum likelihood is applicable mainly in situ-
ations where the true distribution on the sample space is known apart from the
values of a finite number of unknown real parameters.

Example 1. Let x = (x1, x2, ..., xn) be a random sample from an N(µ, σ2)
distribution. The log-likelihood function is

`(θ | x) = −Σ(xi − µ)2

2σ2
− n

2
ln(σ2)− n

2
ln(2π).

Taking the first derivative (gradient), we get

∂`

∂θ
= (

Σ(xi − µ)

σ2
,

Σ(xi − µ)2

2σ4
− n

2σ2
).

Setting
∂`

∂θ
= 0

and solve for θ = (µ, σ2) we have

θ̂ = (µ̂, σ̂2) = (x,
n− 1

n
s2),

where x = Σxi/n is the sample mean and s2 = Σ(xi−x)2/(n− 1) is the sample
variance.
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It is not difficult to verify that these values of µ and σ2 yield an absolute
(not only a local ) maximum of the log-likelihood function, so that they are
maximum likelihood estimates.

Example 2. Consider the following linear regression model

y = Xβ + ε,

ε ∼ N(0, σ2I).

Here

θ =

[
β
σ2

]
We have seen that, in this case, the log-likelihood is

lnL(y; θ) = −n
2

ln(2π)− n

2
ln(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ).

The score is

s(θ) =
δlnL(y; θ)

δθ
=

[
δlnL(y;θ)

δβ
δlnL(y;θ)

δσ2

]
=

[
− 1
σ2 (X ′Xβ −X ′y)

− n
2σ2 + 1

2σ4 (y −Xβ)′(y −Xβ)

]

The maximum likelihood estimators for β and σ2 are obtained solving the fol-
lowing system

δlnL(y; θ)

δβ
= − 1

σ2
(X ′Xβ −X ′y) = 0

δlnL(y; θ)

δσ2
= − n

2σ2
+

1

2σ4
(y −Xβ)′(y −Xβ)

The maximum likelihood (ML) estimator for β is the ordinary least squares
(OLS) estimator given by

b = (X ′X)−1X ′y

The ML estimator of σ2 is given by

σ̂2 =
1

n
e′e

where e = y −Xb.
Substituting b and σ̂2 in the log-likelihood function and exponentiating gives

the maximum of the likelihood function as

L(b, σ̂2) = (2π)−n/2exp
(
−n

2

)
(σ̂2)−n/2 =

(
2π

n

)−n/2
exp

(
−n

2

)
(e′e)−n/2

4.1 Maximum Likelihood estimator: consistency

Here, we consider θ a single parameter, that is Θ ⊂ R.

Theorem 4. Let x1, ..., xn be i.i.d. with probability density satisfying suit-
able regularity conditions. Then there exists a sequence θ̂n = θ̂n(x1, ..., xn) of
local maxima of the likelihood function L(x1, ..., xn; θ) which is consistent.

13



Proof. We denote with θ0 the true parameter value. Applying first order
Taylor expansion to the score, with initial point θ0 we get

δlnf(xi; θ)

δθ
=

[
δlnf(xi; θ)

δθ

]
θ0

+

[
δ2lnf(xi; θ)

δθ2

]
θ0

(θ − θ0) + R(xi; θ; θ0)

Summing for i = 1, 2, ..., n and dividing by n (averaging) we get

1

n

δlnf(x; θ)

δθ
=

1

n

n∑
i=1

δlnf(xi; θ)

δθ

=
1

n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

+
1

n

n∑
i=1

[
δ2lnf(xi; θ)

δθ2

]
θ0

(θ − θ0)

+
1

n

n∑
i=1

R(xi; θ; θ0) (16)

Some suitable form of the weak law of large numbers (WLLN) ensures that

plim
1

n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

= 0

and

plim
1

n

n∑
i=1

[
δ2lnf(xi; θ)

δθ2

]
θ0

= −i(θ0;x)

Thus, for a conveniently large n, the first term on the right hand side of (16)
will be negligible, while the second term will be negative if (θ − θ0) is positive,
and will be positive if (θ − θ0) is negative.

Concerning the residual term, for large n and small (θ− θ0), regularity con-
ditions and Taylor expansion properties ensure that its contribution is negligible
with respect to the other terms.

The consequence is that, when n is large enough, analyzing an arbitrarily
small interval around θ0, the left hand side of (16) is positive on the left of θ0,
negative on the right: thus, arbitrarily close to θ0 there is a point where the
log-likelihood has a local maximum (and the score is zero).

Remark 1.. Theorem 3 asserts the consistence not of the MLE but of a
suitable sequence of local maxima of the likelihood

Remark 2. Theorem 3 does not guarantee the existence of a local maximum
for all (x1, ..., xn).

Corollary 1. Under the assumptions of Theorem 4, if the likelihood equation
has a unique root θ̂n = θ̂n(x1, ..., xn) for each n and all (x1, ..., xn), then

i. θ̂n is a consistent estimator

and

ii. with probability tending to 1 as n→∞, θ̂n is the MLE.
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4.2 Maximum Likelihood estimator: asymptotic normal-
ity

In this subsection we will utilize the following results.

Proposition 3. If xn
D→ x and plimyn = c. Then, xnyn

D→ cx. That is the
limiting distribution of xnyn is the distribution of cx.

Proposition 4. If y ∼ N(µ,Σ) and C is a (p× n) constant matrix of rank
p, then Cy ∼ N(Cµ,CΣC ′).

Considering again θ a vector of parameters, that is Θ ⊂ Rp. If

1

n

n∑
i=1

δlnf(xi; θ)

δθ

=
1

n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

+
1

n

n∑
i=1

[
δ2lnf(xi; θ)

δθ2

]
θ0

(θ − θ0)

+
1

n

n∑
i=1

R(xi; θ; θ0)

is computed at θ̂, the left hand side is zero.
Thus we have

− 1

n

n∑
i=1

[
δ2lnf(xi; θ)

δθ2

]
θ0

(
θ̂ − θ0

)
=

1

n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

+
1

n

n∑
i=1

R(xi; θ̂; θ0)

Multiplying by
√
n we get

−
√
n

1

n

n∑
i=1

[
δ2lnf(xi; θ)

δθ2

]
θ0

(
θ̂ − θ0

)
=
√
n

1

n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

+
√
n

1

n

n∑
i=1

R(xi; θ̂; θ0)

It follows that

√
n
(
θ̂ − θ0

)
=

[
−

n∑
i=1

δ2lnf(xi; θ)

δθ2

]−1

θ0

1√
n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

+

[
−

n∑
i=1

δ2lnf(xi; θ)

δθ2

]−1

θ0

1√
n

n∑
i=1

R(xi; θ̂; θ0)

When n → ∞ (and therefore θ̂ → θ0) still the contribution of the residual
term becomes negligible.

Thus, for a conveniently large n, we have
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√
n
(
θ̂ − θ0

)
=

[
−

n∑
i=1

δ2lnf(xi; θ)

δθ2

]−1

θ0

1√
n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

The term with second order derivatives, it converges in probability to the
information matrix I(θ0) and some suitable form of the Central Limit Theorem
(CLT) ensures that

1√
n

n∑
i=1

[
δlnf(xi; θ)

δθ

]
θ0

D→ N(0, I(θ0))

Thus, by Propositions 3 and 4, we can conclude that

√
n
(
θ̂ − θ0

)
D→ N(0, I(θ0)−1) (+)

The practical consequence of (+) is that, when n is large enough,
√
n(θ̂−θ0)

has approximately a normal distribution with zero mean and I(θ0)−1 variance-

covariance matrix. Thus (θ̂− θ0) has approximately a normal distribution with
zero mean and I(θ0)−1/n variance-covariance matrix, that is

θ̂ approx. ∼ N
[
θ0, I(θ0)−1/n

]
.

Practical estimation of the information matrix can be done in two different
ways, using the sample analogues of the expectations on the right hand sides of
(7) or (11): each expectation is replaced by the sample average, and derivatives

are computed at θ̂

1. Hessian estimator of I(θ0) = 1
n

∑n
i=1

[
−∂

2lnf(xi,θ)
∂θ∂θ′

]
θ̂

= 1
n

[
−∂

2lnL(x,θ)
∂θ∂θ′

]
θ̂

2. Outer Product estimator of I(θ0) = 1
n

∑n
i=1

[
∂lnf(xi,θ)

∂θ
∂lnf(xi,θ)

∂θ′

]
θ̂

As a consequence, also the practical estimation of the variance-covariance matrix
of θ̂ can be done in two different ways: using the Hessian or using the Outer
Product matrix

1. V̂ ar(θ̂) = (H)−1 =
[
−∂

2lnL(x,θ)
∂θ∂θ′

]−1

θ̂

2. V̂ ar(θ̂) = (OP )−1 =
{∑n

i=1

[
∂lnf(xi,θ)

∂θ
∂lnf(xi,θ)

∂θ′

]
θ̂

}−1

Summarizing, we have that, under suitable regularity conditions, the maxi-
mum likelihood estimator is

• consistent

• asymptotically normal

– with mean equal to the true parameter value

– and variance-covariance matrix equal to the inverse of the information
matrix.
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Therefore, if an estimator is an ML estimator and the regularity conditions
are satisfied, it is not necessary to show that it is consistent or derive its asymp-
totic distribution.

These properties provide the main justification of the method of maximum
likelihood.

4.3 Nonlinear regression model: maximum likelihood and nonlinear
least squares

Let the model and the vector of parameters be

yi = q(xi, β) + ui ui i.i.d. N(0, σ2) i = 1, 2, ..., n θ =

[
β
σ2

]
(17)

where q is a nonlinear function of the explanatory variables xi and of the coeffi-
cients β, satisfying some regularity conditions (continuity and differentiability).
Almost all properties of the linear regression with normal errors apply to the
nonlinear regression as well. The only difference is that, unlike the linear case,
estimation of coefficients usually requires the application of a numerical tech-
nique (e.g. Newton-Raphson or similar), as it cannot be done in closed form.

Being the Jacobian of the transformation ∂ui/∂yi = 1 (so that the density
f(yi, θ) = f(ui, θ)) the log-likelihood is

lnL(y, θ) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

[yi − q(xi, β)]
2

(18)

the score is

∂lnL(y, θ)

∂θ
=

[ ∂lnL
∂β
∂lnL
∂σ2

]
=

[
1
σ2

∑n
i=1 [yi − q(xi, β)] ∂q(xi,β)

β

− n
2σ2 + 1

2σ4

∑n
i=1 [yi − q(xi, β)]

2

]
(19)

thus the system of first order conditions is[
1
σ2

∑n
i=1 [yi − q(xi, β)] ∂q(xi,β)

β = 0

− n
2σ2 + 1

2σ4

∑n
i=1 [yi − q(xi, β)]

2
= 0

(20)

Solution of the last equation gives

σ2 =
1

n

n∑
i=1

[yi − q(xi, β)]
2

(21)

that can be substituted into (18) producing the concentrated log-likelihood

lnL(y, β) = −n
2
ln(2π)− n

2
− n

2
ln

{
1

n

n∑
i=1

[yi − q(xi, β)]
2

}
(22)

There is no more the parameter σ2, so the concentrated log-likelihood has to
be maximized only with respect to the coefficients β. From equation (22) it is
clear that the maximum of the concentrated log-likelihood is the minimum of
the sum of squared errors [yi− q(xi, β)]2; thus maximum likelihood is nonlinear
least squares.
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After β has been estimated minimizing (with some numerical technique) the
sum of squared errors, the estimate of σ2 is obtained from (21); it is the average
of the squared residuals, analogously to the linear regression case.

Remark. Rather than minimizing the sum of squared residuals, one could
minimize “n/2 ln of the average of the squared residuals” (as in equation 22),
using the Newton-Raphson procedure (at least in the last iterations). The coeffi-
cient estimates would obviously be the same, but there would be no need of any
further calculation to estimate the variance-covariance matrix of the coefficients:
it would simply be the inverse of the last iteration’s Hessian matrix.

However, from a computational viewpoint, convergence of the Newton-Raphson
procedure is usually faster when the method is applied to the sum of squared
residuals. Thus, it might be more convenient to split the procedure in two parts:
first compute coefficients minimizing the sum of squared residuals; then, when
convergence has been achieved, compute (and invert) the Hessian of “n/2 ln of
the average of the squared residuals” as an estimate of the coefficients variance-
covariance matrix.

5 The likelihood-based test procedures

Consider (x1, ..., xn), a random sample from a distribution with p.d.f. f(x; θ),
where θ ∈ Θ ⊂ Rp, and suppose that we wish to test

H0 : θ ∈ Θ0

against
H1 : θ ∈ Θ−Θ0

In the present framework Θ0 is defined by an equality restriction

g(θ) = 0

where g is a r × 1 vector of functions and 1 ≤ r ≤ p, that is

Θ0 = {θ ∈ Θ|g(θ) = 0}

g is assumed to be differentiable at all interior points of Θ, and the (r × p)
Jacobian matrix

G(θ) =
δg

δθ′

is assumed to have full rank r, at least in an open neighborhood of true param-
eter θ0.

A number of different test procedures based on ML estimators can be used.

1. Likelihood ratio test

2. Wald test

3. Lagrange multiplier test

The Lagrange multiplier test was introduced in Rao (1948) as an alternative
to the likelihood ratio test of Neyman and Pearson (1928) and Wald (1943) test.
These three tests are known as the Holy Trinity

18



5.1 The Likelihood Ratio Test

Let the likelihood function be L(θ; x), then, in order to test the hypothesis, we
can consider the likelihood ratio defined by

λ(x) =
maxθ∈Θ0 L(θ; x)

maxθ∈Θ L(θ; x)
=
L(θ̃; x)

L(θ̂; x)

The numerator measures the highest ‘support’ x renders to θ ∈ Θ0 and the
denominator measures the maximum value of the likelihood function. By defi-
nition λ(x) can never exceed unity and smaller it is the less H0 is ’supported’
by the data. This suggests that the critical region based on λ(x) must be of the
form

λ(x) < kα 0 ≤ kα ≤ 1

where kα is such that
sup
θ∈Θ0

Pθ (λ(x) < kα) = α

where the function Pθ (λ(x) < kα), defined on Θ0, describes the probabilities of
the Type I first error.

A Problem. The exact null distribution of λ(x) is often difficult to obtain.
However, under certain regularity conditions, the distribution of minus twice

the log likelihood ratio
LR = −2lnλ(x)

converges to a chi-square distribution where the degrees of freedom are deter-
mined as the number r of restrictions on θ required to define Θ0.

If the restriction θ ∈ Θ0 is valid, then imposing it should not lead to a large
reduction in the log-likelihood function

In other terms, we have that

lnλ(x) = lnL(θ̃; x)− lnL(θ̂; x) ≈ 0

and hence
LR = −2lnλ(x) ≈ 0

The null hypothesis is rejected if LR exceeds the appropriate critical value from
the chi-squared tables.

5.2 The Wald test

A practical shortcoming of the likelihood ratio test is that it usually requires
estimation of both the restricted and unrestricted parameter vectors. One or the
other of these estimates may be very difficult to compute. Fortunately, there are
two alternative testing procedures, the Wald test and the Lagrange multiplier
test, that circumvent this problem. In particular, the Wald test involves only the
unrestricted estimate of θ and consequently is convenient when the restricted
estimate of θ is difficult to compute.

In order to test the null hypothesis

H0 : g(θ) = 0
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Wald (1943) proposed the following quadratic form in the vector g(θ̂)

W = g(θ̂)′
[
G(θ̂)I(θ̂)−1G(θ̂)′

]−1

g(θ̂)

The so-called Wald test statistic. The informal argument underlying the
Wald test, is as follows. We calculate unrestricted maximum-likelihood esti-
mates of the unknown parameters (which for large samples are likely to be near
the corresponding true parameters). If the restrictions are true, then the unre-

stricted estimates should come close to satisfying the restrictions and hence g(θ̂)
should be close to zero. Therefore large values of the Wald statistic provide evi-
dence against the null hypothesis. We reject the hypothesis if W is significantly
different from zero.

Under some regularity conditions and under the null hypothesis H0 : g(θ) =
0, W follows asymptotically a chi-square distribution with r degrees of freedom.

The null hypothesis is rejected if W exceeds the appropriate critical value
from the chi-squared tables.

To summarize, the Wald test is based on measuring the extent to which the
unrestricted estimates fail to satisfy the hypothesized restrictions.

5.3 Lagrange multiplier test

Wald tests offer the advantage of only requiring estimates of the unconstrained
model, whereas likelihood ratio tests require estimates of both the unconstrained
and the constrained models. A third class of tests, Lagrange multiplier tests, only
require estimates of the constrained model.

Suppose that we maximize the log-likelihood subject to the set of constraints
g(θ) = 0. Let λ be a vector of Lagrange multipliers and define the Lagrangian
function

L∗(θ) = lnL(θ) + λ′g(θ)

The set of first order conditions can be expressed as:

δL∗(θ)

δθ
=
δlnL(θ)

δθ
+G′λ = 0

δL∗(θ)

δλ
= g(θ) = 0

where

G = G(θ) =
δg(θ)

δθ′
.

The solution of this system provides the maximum likelihood estimate θ̃ of θ
subject to the r×1 vector of constraints g(θ) = 0, and the estimate λ̃ of λ. If the
restriction is valid, then the restricted estimate, θ̃, should be near the point that
maximizes the log-likelihood. Therefore, the slope of the log-likelihood function
should be near zero at the restricted estimator. Hence, the test can be based
on the slope of the log-likelihood at the point where the function is maximized
subject to the restriction. The score test statistic is defined as

ML = s(θ̃)′I(θ̃)−1s(θ̃)
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If the constraints are true, s(θ̃) should be near to the null vector, so that the
region of rejection of the null hypothesis H0 : g(θ) = 0 is associated with large
values of LM.

Under the null hypothesis H0 : g(θ) = 0, ML follows asymptotically a chi-
square distribution with r degrees of freedom. The null hypothesis is rejected if
ML exceeds the appropriate critical value from the chi-squared tables.

Why is the name of this test Lagrange multiplier test? We note that the vec-
tor θ̃ maximizes the Lagrangian function L∗(θ), and so it satisfies the equations

δL∗(θ)

δθ
= 0.

It follows that
δlnL(θ̃)

δθ
= G̃′λ̃.

Thus an alternative expression of the ML statistic is given by

ML = λ̃′G̃I(θ̃)−1G̃′λ̃

This form motives the name of the test.
Much of the justification of the LM test depends on the fact that it bases only

on parameter estimates from the restricted model. That makes it attractive in
situations where the unconstrained model is difficult or impossible to estimate.

5.4 Likelihood ratio test, Wald test and Lagrange multi-
plier test in linear regression model

In this subsection we will illustrate these tests in the framework of linear regres-
sion model

Consider a set of J linear restrictions on the coefficient vector β of the form

H0 : Rβ − q = 0

where R is a known J × k constant matrix of rank J(< k), and q is a J × 1
vector of known constants.

5.4.1 The likelihood ratio statistic

The likelihood ratio test requires estimates of both the unrestricted and the
restricted models. We have seen that if ε is distributed as multivariate normal
with mean vector zero and variance covariance matrix σ2I, then the maximum
likelihood (ML) estimator for β is the ordinary least squares (OLS) estimator
given by

b = (X ′X)−1X ′y

and the ML estimator of σ2 is given by

σ̂2 =
1

n
e′e

where e = y −Xb.
The restricted ML estimator is obtained as the solution to

minβS(β) = (y −Xβ)′(y −Xβ) subject to Rβ = q.
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A Lagrangean function for this problem can be written

L∗(β, λ) = (y −Xβ)′(y −Xβ) + 2λ′(Rβ − q)

where λ is a J × 1 vector of Lagrange multipliers. The solutions b∗ and λ∗ will
satisfy the necessary condition

δL∗

δb∗
= −2X ′(y −Xb∗) + 2R′λ∗ = 0

δL∗

δλ∗
= 2(Rb∗ − q) = 0

The first equation yields

b∗ = b− (X ′X)−1R′λ∗

Premultiplying by R gives

Rb∗ = Rb−R(X ′X)−1R′λ∗

hence
λ∗ =

[
R(X ′X)−1R′

]−1
(Rb− q)

and so
b∗ = b− (X ′X)−1R′

[
R(X ′X)−1R′

]−1
(Rb− q)

The restricted ML estimator of σ2 is given by

σ̂2
r =

1

n
e′∗e∗

where e∗ = y −Xb∗. The LR statistic is given by:

LR = −2ln
maxRβ=q,σ2L(β, σ2)

maxβ,σ2L(β, σ2)

= −2[−n
2

ln(2π)−n
2

ln(σ̂2
r)− 1

2σ̂2
r

(y−Xb∗)′(y−Xb∗)+
n

2
ln(2π)+

n

2
ln(σ̂2)+

1

2σ̂2
(y−Xb)′(y−Xb)].

= −2[−n
2

ln(σ̂2
r)− n

2
+
n

2
ln(σ̂2) +

n

2
].

= −2ln

(
σ̂2

σ̂2
r

)n/2
= n

(
lnσ̂2

r − lnσ̂2
)
.

5.4.2 The Wald statistic

We remember that, in general, the Wald statistic is given by

W = g(θ̂)′
[
G(θ̂)I(θ̂)−1G(θ̂)′

]−1

g(θ̂)

Being

g(θ) = [R,0]

[
β
σ2

]
− q,

We have that

W = (Rb− q)′
[
[R,0]

[
σ̂2(X ′X)−1 0

0 2σ̂4

n

]
[R,0]′

]−1

(Rb− q)

= (Rb− q)′
[
σ̂2R(X ′X)−1R′

]−1
(Rb− q).
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5.4.3 The Lagrange multiplier statistic

Finally, we consider the LM statistic given by:

ML = s(θ̃)′I(θ̃)−1s(θ̃)

To evaluate the score vector at the restricted estimator θ̃ = (b∗, σ̂
2
r)′, we replace

ε with e∗ = y −Xb∗ and σ2 by σ̂2
r . Thus

s(θ̃) =

[ 1
σ̂2
r
X ′e∗
0

]
We have

ML =

[
1

σ̂2
r

X ′e∗ 0

][
σ̂2
r(X ′X)−1 0

0
2σ̂4

r

n

] [ 1
σ̂2
r
X ′e∗
0

]

=
e′∗X(X ′X)−1X ′e∗

σ̂2
r

.

Being
e∗ = y −Xb∗ = y −Xb−X(b∗ − b)

and
b∗ − b = −(X ′X)−1R′

[
R(X ′X)−1R′

]−1
(Rb− q),

we have that

e∗ = e+ (X ′X)−1R′
[
R(X ′X)−1R′

]−1
(Rb− q).

Hence
e′∗X(X ′X)−1X ′e∗ = (Rb− q)′

[
R(X ′X)−1R′

]−1
(Rb− q)

It follows that

LM = (Rb− q)′
[
σ̂2
rR(X ′X)−1R′

]−1
(Rb− q).

5.4.4 The asymptotically equivalence of W and LM statistics

Consider the following expressions of W and LM statistics, respectively

W = (Rb− q)′
[
σ̂2R(X ′X)−1R′

]−1
(Rb− q)

and
LM = (Rb− q)′

[
σ̂2
rR(X ′X)−1R′

]−1
(Rb− q)

We note that the W and LM statistics differ only by different estimates of σ2.
This implies that we can express the LM test statistic as

LM =
σ̂2

σ̂2
r

W

If we make use of the fact that the likelihood ratio is given by

λ(β, σ2) =

(
σ̂2

σ̂2
r

)n/2
,

we can express the LM statistic as

LM = [λ(β, σ2)]2/nW

This makes it obvious that the LM and W statistics are asymptotically equiv-
alent.
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5.4.5 The LR, LM, and W tests as functions of the F test

An alternative approach to testing the null hypothesis H0 : Rβ − q = 0 is to
estimate the restricted and unrestricted models and compute the following F
statistic

F =
(RRSS − URSS)/J

URSS/(n− k)

where RRSS stands for the sum of the squared residuals of the restricted model
and URSS is the same for the unrestricted model (For example, see Maddala
(19??, p. 458). The idea behind this test is intuitive. The F -statistic compares
the residual sum of squares computed with and without the restrictions imposed.
If the restrictions are valid, there should be little difference in the two residual
sum of squares and the F -value should be small. If RRSS is different from URSS,
then we reject these restrictions.

Evans and Savin [4, p. 740] have shown that all the LR, LM, and W tests
are monotonic functions of the F test statistic. Here we offer a proof of this fact.

We start considering the sum of the squared residuals of the restricted model.
It is given by

e′∗e∗ = e′e+ (b∗ − b)′X ′X(b∗ − b)

and hence
e′∗e∗ − e′e = (Rb− q)′

[
R(X ′X)−1R′

]−1
(Rb− q)

This appears in the numerator of the F statistic. Inserting the remaining parts,
we obtain

F =

(
(Rb− q)′

[
R(X ′X)−1R′

]−1
(Rb− q)

)
/J

e′e/(n− k)

On the other hand, we have seen that the W test statistics is given by:

W = (Rb− q)′
[
σ̂2R(X ′X)−1R′

]−1
(Rb− q),

thus we can conclude that

W =
nJ

n− k
F.

The Wald statistic is a strictly increasing function of the F statistic.
Now we consider the LM statistic given by:

LM = (Rb− q)′
[
σ̂2
rR(X ′X)−1R′

]−1
(Rb− q)

where σ̂2
r = e′∗e∗/n. We have that

W =
n (e′∗e∗ − e′e)

e′e

and

LM =
n (e′∗e∗ − e′e)

e′∗e∗
=

n (e′∗e∗ − e′e)
e′e+ e′∗e∗ − e′e

=

n(e′∗e∗−e
′e)

e′e

1 +
e′∗e∗−e′e

e′e

=
W

1 +W/n

Thus

LM =
nJ
n−kF

1 + ( nJ
n−kF )/n

=
nJF

m− k + JF
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Also the LM statistic is a strictly increasing function of the F statistic.
Finally, we consider the LR statistic given by:

LR = −2ln
maxRβ=q,σ2L(β, σ2)

maxβ,σ2L(β, σ2)
= −2ln

(
σ̂2

σ̂2
r

)n/2
= n

(
lnσ̂2

r − lnσ̂2
)

This test statistic can also be written as follows

LR = n
(
lnσ̂2

r − lnσ̂2
)

= n (lne′∗e∗ − lnn+ lnn− lne′e) = n (lne′∗e∗ − lne′e)

= nln
e′∗e∗
e′e

= nln

(
1 +

e′∗e∗ − e′e
e′e

)
= nln

(
1 +

W

n

)
It follows that

LR = nln

(
1 +

J

n− k
F

)
Hence the W, LM and LR statistics are functions of the F statistic.

The fact that each test statistic is a function of the F statistic implies that
the three exact tests are equivalent: in the n dimensional sample space the three
exact tests have the same critical region. In other words, when the exact W
test accepts H0 at significance level α the exact LM and LR tests also accept
H0 at level α and similarly if the exact W test rejects H0. As a consequence,
the exact tests have the same power function-the power function of the F test.
Hence there can be no conflict between the exact tests.

5.4.6 The W, LR and LM Inequality

An interesting relationship between the three tests statistics, when the model
is linear, is the following:

W ≥ LR ≥ LM

That is, the Wald test statistic will always be greater than the LR test statistic,
which will, in turn, always be greater than the test statistic from the score test.
This inequality was obtained by Berndt and Savin (1977). In order to prove this
result, we remember that

LM =
W

1 +W/n

and that

LR = nln

(
1 +

W

n

)
It follows that

LM

n
=

W/n

1 +W/n

and that
LR

n
= ln

(
1 +

W

n

)
.

Then we use the fact that y ≥ ln(1 + y) = y ≥ (1 + y) for y = W/n.
We have that although the asymptotic Wald, likelihood ratio, and Lagrange

Multiplier tests have identical limiting chi-square distributions, a numerical in-
equality holds, yielding conflicting inference, especially for small samples.
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Finally, we note that LR = W = LM for the null H0 : θ = θ0 if the log-
likelihood is quadratic. In fact, we consider a quadratic likelihood function given
by

l(θ) = κ− 1

2
(θ − θ̂)′A(θ − θ̂)

where θ̂ is a statistic, κ a constant and A is a known positive definite matrix.
The score vector is

δl(θ)

δθ
= s(θ) = −A(θ − θ̂),

and the Hessian matrix is
δ2l(θ)

δθδθ′
= −A.

Since the Hessian matrix is a constant, we have I(θ) = A. Further, it is clear

that θ̂ is the MLE for θ. Thus we have

LR = lnL(θ0)− lnL(θ̂) = −2

[
−1

2
(θ − θ̂)′A(θ − θ̂) +

1

2
(θ − θ0)′A(θ − θ0)

]
= (θ̂ − θ0)′A(θ̂ − θ0).

W = g(θ̂)′
[
G(θ̂)I(θ̂)−1G(θ̂)′

]−1

g(θ̂) = (θ̂ − θ0)′A(θ̂ − θ0).

and
ML = s(θ0)′I(θ̃)−1s(θ0) = (θ̂ − θ0)′A(θ̂ − θ0).

We can therefore conclude that LR = W = LM .

5.5 The likelihood-based test procedures: conclusions

In summary:

Likelihood ratio test. Estimate θ with MLE, estimate again by imposing
the H0 restrictions, test if lnL(θ̃; x)− lnL(θ̂; x) = 0.

Wald test. Estimate θ with MLE, check if g(θ̂) = 0.

Lagrange multiplier test. Estimate θ under the H0 restrictions, check if
s(θ̃) = 0

1. Under regularity conditions and under the null hypothesis Ho : g(θ̂) = 0;
each of the above statistics LR, W and ML, follows asymptotically a
chi-square distribution with r degrees of freedom. Thus, in large samples,
if the null hypothesis is true, the likelihood ratio, Wald, and Lagrange
multiplier tests all tend to the same answer.

2. In small samples, the statistics may lead to conflicting conclusions, even
when the null hypothesis is true.

3. However, even in large samples, the three tests can differ in their power
against various alternatives.

4. The choice among the three statistics is often based on computational
convenience.
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